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This paper discusses the performance of a variety of numerical methods applied 
to the determination of the rate constant and order of contracting interface reactions 
in the solid state. The methods studied are (a) a direct search method proposed by 
V~irhegyi, (b) a modification of V~trhegyi's method which involves a unidimensional 
search, (c) the direct search procedure of Hooke and Jeeves and (d) the Gauss-- Newton 
technique of non-linear least squares. The results demonstrate that the modified 
strategy (b) is by far the most efficient of the three direct search methods but that the 
non-linear least squares technique is superior in performance to any of the direct 
search methods. 

When  a solid decomposes under  isothermal conditions by a contract ing inter- 
face mechanism, the fraction of  material decomposed,  ai at time, t i may  be expres- 

s e d  by the equat ion:  

~i = 1 - [1 - kti(1 - n)] 1'(1-~-) i = 1, 2, 3 . . . p  (1) 

where k is the rate constant  for the reaction and n ( 4  1) is the reaction order. 
I n  this equat ion only values o f  n --- 1/2 and 2/3, which correspond respectively 
to the reaction interface moving as a contract ing disc or  sphere, have theoretical 
significance [1 ]. Other  values may  be expected in practice, however, due to varia- 
tions in sample geometry etc. [2, 3]. In such cases, the accurate determination o f  
the kinetic parameters  is complicated by the non-l inear fo rm of  Eq. (1). 

Several approaches to the evaluation o f  kinetic parameters have been reviewed 
by Judd  and Norris  [4] who showed that  the simultaneous determination o f  k 
and n is readily achieved by the G a u s s - N e w t o n  method  of  non-linear least 
squares (NLLS).  In  this method,  ui, is approximated  by a first order, differential 
T a y l o r  series and iterative corrections to initial estimates o f  k and n a re  calculated 
so as to minimize:  

P 

Q(k,  n) = Z (~i,~ - ~i,c)ZWi (2) 
i = 1  

in which ~, e is the experimental value o f  ~i, ~i,o is the value predicted f rom 
Eq. (1) and each term in the sum is weighted by the factor  Wi = 1/a2(~i), where 
~r(~i) is the s tandard  deviation in ~i,~.* 

* If the values of ~,,~ are equalls~ precise, a~(~0 has the same value for all i and Wi can be 
taken as 1. 

3-. Thermal Anal 9, 1976 



426 N O R R I S ,  et al.: C O M P U T A T I O N  O F  K I N E T I C  P A R A M E T E R S  

More recently Vfirhegyi [5] has proposed an alternative approach based on 
a direct search method. The present paper discusses Vfirhegyi's (V) method in 
detail and describes an improvement to it. The performance of  the V and improved 
methods is then examined and the results are compared with those obtained from 
the NLLS technique and the standard direct search scheme of Hooke and Jeeves 
[6, 71. 

Mathematical background 

In essence, Vfirhegyi's approach is to replace the quasi-linearization of the 
NLLS method by a direct linearization which avoids the necessity to calculate 
derivatives. To do this he minimizes not Q(k, n), but Q'(k, n) defined by: 

P 

Q'(k, n) = S (Yi,e - Y~,32W'i (3) 
i = l  

where Yi,e = (1 -- ei,e) 1-", Yi,c is calculated from Eq. (1) rewritten as: 

Yi,e = (1 - cq,~) 1-n = 1 - kti(1 - n) i = 1, 2 , . . . p  (4) 

and the weighting factor W'i = 1/az(]z,) = [(1 - cq,,)n/(n - 1)]z, *. The procedure 
commences by assigning a value of n to calculate a consistent value of k from 
a linear least squares analysis with ~,e and t~ as the response and predictor variables 
respectively. Vfirhegyi then predicts Y~,~, forms Q'(k, n) and repeats the process 
for a range of (10 -15)  values of n, taking the optimum values of  k and n as the 
set which produces Q'(k, n)mi~ z. 

Unfortunately, the computational simplicity gained by avoiding derivatives is 
offset by the opposing requirements of speed, which is greatest with few widely 
spaced values for n, and accuracy, which is low unless many closely spaced values 
of n are selected over the anticipated range. These two requirements can be recon- 
ciled, however, using the same basic approach but adopting a more powerful 
strategy to search for the optimum values of k and n. An efficient method which 
is particularly suitable in the present circumstances is the unidimensional search 
(UDS) as implemented by Davies, Swann and Campey [8]. 

In this routine, the function Q'(k, n) is first evaluated with an initial estimate 
n (0) = 0.5 and k (0), the consistent linear least squares value of the rate constant. 
An amount An is then added to obtain n (1) = n (~ + An, and the consistent rate 
constant k (1) is calculated. If  Q'(k (~), n 0)) < Q'(k (~ n (~ the step length An is 
doubled and a further move is made in this direction to give n (2) = n (1) + 2An 
and Q'(k (2), n(2)). This process is repeated until the function value increases indi- 
cating that the minimum has been passed. 

* A prOpagation of error analysis defines a2(Yt) = (OYj,J6a:.e) 2 a2(a.) and the equation 
for W', follows assuming a(aj) is constant for all i. 
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At this stage the current step size is halved and the last value of n is reduced 
by this new step to give four equally spaced points a distance d apart. The point 
furthest from the point of lowest function value is rejected and the remaining three 
points are used to fit a parabola, the minimum [7 ] of which is given by: 

a!mi  n = n(b) + 0.5d[Q'(k (~, n(~>) _ Q'(k(Cl, n(Cl)]/[Q'(k(al, n(a?) - 2Q'(k(b~, n(b)) + 

+ Q'(k (c), n(~))] (5) 

where nO) is the central point, n (~ = n (b) - d and n (~ = n (b) + d. If  the first step 
fails to reduce the function value then the search is reversed by setting An -- - A n .  
An immediate failure on reversal indicates that the minimum has been bracketed 
and the quadratic interpolation may be performed. If  necessary, the accuracy with 
which the minimum is obtained can be increased by restarting the search from the 
estimated minimum with a reduced step size. 

An alternative direct search approach to the minimization of Q'(k, n) is afforded 
by the procedure of Hooke and Jeeves (HJ) [6, 7], the application of which, like 
the NLLS method, has been described in detail elsewhere [9]. In contrast to the 
UDS approach, the HJ method is multidimensional and k as well as n is changed 
incrementally. The method seeks the minimum in Q'(k, n) by making exploratory 
searches to establish a direction in which further minimization is likely and then 
extrapolating in this direction to accelerate the search. 

Experimental 

Both simulated and experimental data have been used to test the performance 
.of the numerical methods. The simulated c~, t data were generated from Eq. (1) 
using a value of k s i  m = 0.01 and values of  nsi m = 0.225, 0.525 and 0.825 represen- 
tative of the typical range of  n encountered in contracting interface decompositions. 
The latter values were chosen so that, with the UDS method, a starting estimate 
of n = 0.5 coupled with the optimum initial step size of An = 0.027 did not locate 
r/si m fortuitously. The selection of the optimum value of An is described in the 
appendix. Values chosen for t i w e r e  0, 5, 10 . . . .  100 time units; the highest time 
producing maximum values for ~ of 0.85, 0.74 and 0.67 when /tsi m = 0.225, 
0.525 and 0.825 respectively. Initial estimates of k for the HJ and NLLS methods 
were calculated by a linear least squares analysis of Eq. (4) with n -- 0.5 and 
Y~,o = Y~,~ (i = 1 , 2 , 3 . . . p ) .  

The effect of experimental error was studied by calculating random errors, 
~,i within a range + E~ and adding them to the exact values of % Two ranges 
of E~ = ___0.002 and +0.005 were used and, since the distribution of the errors 
was independent of time, a(cq) was assumed to be constant. 

The methods were also used to determine kinetic parameters for the isothermal 
(298.2 K) dehydration of strontium hydroxide octahydrate under vacuum. Details 
of  the experimental apparatus, procedures and experimental data are given 
elsewhere [4, 9]. Computer programs were written in ALGOL 60 for the ICL 4130 
computer. 
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Results and discussion 

To facilitate comparison with u approach the calculations carried out 
with the direct search methods have minimized Q'(k, n) using the functional rela- 
tionship of Eq. (3). This relationship cannot be used for the NLLS method, 
however~ since the assignment of  a value of n to calculate the response variable 
(1 - ~i,~) 1-n produces a linear least squares problem and any attempt to optimize 
simultaneously the values of  k and n gives linearly dependent normal equations 
and a singular coefficient matrix. The function Q(k, n) has therefore been mini- 
mized for the NLLS technique. Tests with the direct search methods confirm that 
the reductions of  Q(k, n) and Q'(k, n) give identical values for k and n. 

Geometrical interpretation of the least squares function Q'(k, n) 

It  is instructive to examine the shape of the response surface of the function 
Q'(k, n) since it gives information on the results to be expected from optimization 
procedures. For  this purpose, values of  k = 0.01 and n = 0.5 were used to gener- 
ate error-free ~-t data, and values of Q'(k, n) were calculated from combinations 
of  k and n within the ranges k = 0.0 - 0.05 and n = 0.0 - 1.0. 

Figure 1 shows a three-dimensional representation, drawn by computer, of  the 
response surface near the minimum in Q'(k, n). The flat, cross-hatched area is 
obtained by assigning a constant arbitrary value C to all values of  Q'(k, n) greater 
than C; a device which greatly facilitates the visualization of the response surface. 
The orientation has been chosen to show that the minimum lies in an elongated 
valley and, when due consideration is given to the scales of  the axes, the floor of  
this valley is found to make an angle of  < 1 ~ with the n-axis. Representations of  

o' 

Fig. 1. Three -d imens iona l  represen ta t ion  o f  the  r e sponse  sur face  nea r  the  m i n i m u m  o f  the 
Q' (k ,  n) f u n c t i o n  (0.008 N k _<0.0125, 0.1 _< n < 1.0), 
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the response surface over greater ranges of  k and n confirm that the valley is 
almost straight and very much flatter in the n- than in the k-direction.The alignment 
demonstrates that the value of k will be determined more accurately than the 
value of n [10] whilst the steep sides and comparative flatness of the ravine suggest 
that k will also be found more reproducibly than n. Finally, representations over 
the full ranges of  k and n show the presence of a single, well defined minimum. 
Thus, Q'(k, n) is unimodal and all optimization procedures locating the minimum 
will produce approximations to the same unique values of  k and n. 

Simulated data 

The results of  applying the V and UDS methods to the estimation of k and n 
are shown in Table 1 and the results of  the HJ  and NLLS techniques are given in 
Table 2. Data  in both tables confirm the above conclusion that k is determined 
more accurately than n, The relative accuracies of  the direct search methods, which 
specify an interval in which the minimum in Q'(k, n) lies, are assessed by comparing 
the predictions for k and n with the (NLLS) least squares values shown in Table 2. 

TaMe 1 

Comparison of V and UDS methods for the optimization of k and n 
(ks1 m = 0.01) 

Method V U D S  

nsim E~ k n NQ, k n NQ,  

0.225 

0.525 

0.825 

0.000 
0.002 
0.005 

0.000 
0.002 
0.005 

0.000 
0.002 
0.005 

0.0102 
0.0102 
0.0102 

0.0101 
0.0101 
0.0101 

0.0101 
0.0101 
0.0101 

0.25 
0.25 
0.25 

0.55 
0.55 
0.55 

0.85 
0.85 
0.85 

14 
14 
14 

14 
14 
14 

14 
14 
14 

0.0100 
0.0100 
0.0101 

0.0100 
0.0100 
0.0100 

0.0100 
0.0100 
0.0100 

0.232 
0.232 
0.233 

0.525 
0.526 
0.527 

0.828 
0.829 
0.830 

When the data are error-free, the least squares estimates naturally correspond to 
the simulated values but, when error is assigned, the least squares values are per- 
turbed slightly. 

V~trhegyi's original scheme has been tested using 14 values of  n starting f rom 
0.2 and increasing in steps of  0.05 to 0.85, that is, the number of evaluations of  
the function Q'(k, n) is N o, = 14. The results in Table 1 demonstrate that, whatever 
the value of E~, the V method estimates k to within 1 - 2 ~ of  k~im at all levels 
of  nsim, whilst n is predicted to be f rom 11 ~ (n~i m = 0.225, no error) to 2 ~o 
(F/si m ~- 0 . 8 2 5 ,  E~ = ___0.005), higher than the least squares values. 
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Table 2* 

Comparison of HJ and NLLS methods for the optimization of k and n 
(ksi m = 0.01) 

Method HJ NLLS 

nsim E~ k n NQ, k n NQ, 

0.225 

0.525 

0.825 

0.000 
0.002 
0.005 

0.000 
0.002 
0.005 

0.000 
0.002 
0.005 

0.0100 
0.0100 
0,0100 

0.0100 
0.0100 
0.0100 

0.0100 
0.0100 
0.0160 

0.227 
0.210 
0.229 

0.527 
0.527 
0.533 

0.823 
0.829 
0.834 

93 
71 
90 

57 
50 
54 

95 
94 
97 

o.oloo(o) 
o.oloo(o) 
o.oloo(o) 

O.OLOO(O) 
o.o~oo(o) 
O.OLOO(O) 

O.OLOO(O) 
o.oloo(o) 
O.OLOO(O) 

0.225(0) 
0.227(3) 
0.230(9) 

0.525(0) 
0.528(5) 
0.532(13) 

0.825(0) 
0.829(7) 
0.834(18) 

* In Tables 2 and 3, numbers in parentheses indicate standard deviations e.g. 0.0101(1) 
= 0.0101 + 0.0001, 0.834(18) = 0.834 + 0.018 etc. 

Now, with the U D S  procedure it is convenient to start the minimization with 
n = 0.5 since the search reverses automatical ly if  Q'(k, n) increases at the first 
step. Hence, only half  the possible range o f  n is searched and the resulting increase 
in efficiency, together with the improved search strategy, reduce N o, by a factor  
of  two. Here NQ, includes the evaluation o f  Q'(k, n) at the interpolated value o f  n. 
In  addition, whilst bo th  V and UDS methods predict ksi m to similar accuracy, 
the U D S  strategy decreases significantly the error in the estimation o f  n to between 
3 ~ and <0 .5  ~ ,  at the lowest (no error) and highest (E~ = __+ 0.005) values o f  n~im 
respectively. Clearly, the accuracy can be increased further by restarting the search 
f rom the interpolated min imum with a reduced step size. Thus, for  exact data, 
when n.~im = 0.825 and the search is restarted f rom n = 0.828 with a step size o f  
0.0027 the least squares estimate o f  0.825 is reached when N•, = 12; similar gains 
are found at other levels o f  nsf m and with assigned error. The results demonstrate  
clearly the improvement  that  the UDS modification makes to Vfirhegyi's method.  

In contrast,  the values Of NQ, in Table 2 show that  the HJ  search performs very 
inefficiently on the present problem. In  all cases the search commences  f rom 
n = 0.5 and the consistent linear least squares value of  k. Initial fractional steps 
An and Ak of  0.2 are reduced to 0.02 when no further reduct ion in the value 
o f  Q'(k, n) is obtained and the search is terminated when Q'(k, n) is a min imum 
with the smaller step sizes. The estimates o f  k and n are generally comparable  in 
accuracy with those obtained f rom the UDS routine but N 0, is very much higher. 
The inefficiency of  the HJ  search in the present case arises f rom the fixed incre- 
mental  changes made to k for  a given value o f  n. This practice contrasts with the 
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V and UDS schemes which both produce a minimizing least squares estimate of 
k for a particular value of n. The linear minimization, or accurate line search, is 
very effective in optimization methods [11 ] but it can be time-consuming when 
the number of parameters is large. The HJ technique is obviously more appro- 
priate for multidimensional problems (see below). 

Unlike the procedures described above the NLLS technique will converge itera- 
tively to the true least squares solution.* The results in Table 2 demonstrate 
cle~ly the superiority of the NLLS method not only with respect to accuracy but 
also with regard to the small number of function evaluations, although it should 
be recalled that a matrix inversion is carried out at each step to solve the normal 
equations and to generate the inverse coefficient matrix [13]. The evaluation of 
the inverse matrix has an added benefit, however, since it can be used to estimate 
the standard deviations in the parameters; information which is not readily obtain- 
able from direct search strategies. 

The standard deviations obtained for k and n confirm the deductions made from 
an examination of the response surface. 

Experimental data 

When the numerical methods described above are applied to the determination 
of kinetic parameters for the dehydration of strontium hydroxide octahydrate 
they lead to the data shown in Table 3. The results support entirely the conclusions 

Table 3 

Prediction of k and n for isothermal (298.2K) dehydration of  strontium 
hydroxide octahydrate under vacuum 

Method 

Parameter (V) (UDS) (H J) (NLLS) 

k 
n 
No, 

0.0576 
0.40 

14 

0.0567 
0.383 

7 

0.0563 
0.369 

64 

0.0567(0) 
0.382(3) 

4* 

* The function Q (k, n) was used for the NLLS method. 

drawn from the tests with simulated data. Thus, the NLLS approach is found to 
perform better than any of the three direct search methods. Of the latter schemes, 
the UDS strategy is a considerable improvement to V~trhegyi's method whereas 
the HJ search is less efficient if comparable accuracy is required. 

* Gorbachev et al. [12] state that the NLLS method can lead to (unspecified) difficulties. 
However, if the minimizing function is weighted correctly, n and k can be located accurately 
over the whole range of interest, 0.05 < n < 0.95, even when E~ = _0.01.  
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Extension of the numerical methods 

The determination of k and n from Eq. (1) is a two-dimensional non-linear 
problem, the solution to which can be obtained, with varying efficiency, by any 
of  the methods discussed in this paper. However, the extent of reaction, c~, is not 
a directly observable quantity and it is calculated by measuring the value of  a 
property which is directly proportional to the amount of  reactive material in the 
system. Thus, in gravimetric work, c~ is expressed in terms of the total mass, m, of 
the reactant using the relationship: 

~ = ( too - m O / ( m o  - m . )  

where the suffices o, t and oo refer to the initial, intermediate and final values of the 
sample mass. 

Frequently, m 0 and moo are known with high accuracy, and are regarded as 
constants. With overlapping decompositions, however, the measurement of  moo 
may be inaccurate, whilst, less frequently, the value of m o may also be unreliable. 
In these circumstances it is obviously desirable to optimize k, n, moo and possibly m 0. 
Clearly, the V and UDS methods, which are both strictly unidimensional strategies 
are unsuitable for this purpose and the problem can only be solved effectively by 
a multidimensional technique such as the HJ and NLLS methods. The detailed 
solution will be considered in a subsequent paper [14]. 

The authors would like to thank Messrs. B. A. Collins and M. J. J. Holt  for helpful dis- 
cussions and for writing the perspective plotting program. 

Appendix 
Calculation of optimum step size for the UDS strategy 

Let the functionf(x) be unimodal within the interval (a, b), the minimum value 
occurring at x = x.* Then, if the search begins from the mid-point of the interval, 
Xm = (a + b)/2 with a step Ax, comparison of the function values f(Xm) and 
f(xm + Ax) will determine if the search is moving in the correct direction. I f  it is 
not, the search is reversed and so, in either case, only the half-interval [b - a ]/2 
needs to be investigated. 

Now, if the initial step is doubled at each move then the total distance travelled 
after one, two, three etc. steps is [ Ax I, 3 ]Ax [, 7 ]Ax ] etc. After s steps, the total 
distance moved is therefore (2 ~ - 1) [Ax [, and if the user specifies that the half- 
interval must be covered in no more than this number of moves then 

or  

]b - a]/2 = (2 s - 1)lax] 

]Axl = lb - aj/[2(2 s - 1)] 
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In  the present work  a value o f  s = 4 is a suitable compromise  between speed 
and accuracy so that,  for  the full search interval o f  n = 0.1 - 0.9, the opt imum 
initial step size is given by 

I A x l  : 10.9 - 0.11/(2x 15) : 0.027 

Clearly the search will be more  accurate but slower for  larger values of  s. 
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R~SUMt~ - -  L'article examine les caract6ristiques de plusi~urs m6thodes num6riques appliqu6es 
~t la d6termination de la constante de ~itesse et de l 'ordre des r6actions d'interface contrac- 
tantes dans l'6tat solide. Les m6thodes 6tudi6es sont (a) une m6thode de recherche directe, 
propos6e par Vfirhegyi, (b) la m6thode de V~irhegyi modifi6e qui met en jeu une recherche 
uni-dimensionnelle, (c) la m6thode de recherche directe suivant Hooke et Jeeves et (d) la 
m6thode des moindres carr6s non-lin6aires suivant Gau3s et Newton. Les r6sultats montrent 
que la m6thode modifi6e (b) est la plus efficace parmi le~ trois m6thodes directes mais que la 
te.chnique des moindres carr6s non-lin6aires est sup6rieore ~t toutes les m6thodes de recherche 
directe. 

ZUSAMMENFASSUNG - -  ES wird die Eignung einer Anzahl numerischer Methoden, welche 
zur Bestimmung der Geschwindigkeitskonstante und der Ordnung kontrahierender Zwischen- 
fl~ichenreaktionen im festen Zustand eingesetzt werder~, er/Srtert. Diese Methoden sind a) die 
von Vfirhegyi vorgeschlagene direkte Suchmethode, b) eine Ab/inderung der Methode von 
Vgtrhegyi, welche eine eindimensionale Suche umfas~t, c) das direkte Suchverfahren yon 
Hooke und Jeeves und d) die Gauss--Newton Technik der nicht-linearen kleinsten Quadrate. 
Die Ergebnisse zeigen, dass von den drei direkten S~xchmethoden die modifizierte Strategie 
b) bei weitem die wirksamste ist, jedoch ist die Technik der nicht-linearen kleinsten Quadrate 
in dieser Hinsicht allen direkten Suchmethoden /iberlegen. 
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Pe3ioMe - -  O6cy~)~eHo BLIIIOYlHeHHe p ~ a  tlHCIIOBBIX MeTO~OB, rIpHMeH~IeMt,IX IIpg or/pe~eYleHttH 
I<OaCTaHT cKopocTr~ r~ n o p ~ K a  CmHMa~omrixc~ MeZmoBepxrIOCTm, LX pearalm~ B TBep~IOM COCTOg- 
r r ~ .  H3y~eH~t c~e)Xyro~e  ~eToAr~l: (a) rlp~Mo~ rlOKCKOBbI~ MeTo~, rtpe)x~o~eHHbffr Bapxe~rr, 
(6) ~13MerleHI-ml~ MeTO~ Bapxe~rt, Brnm~a~oturfft 6e3pa3Meprtbil~ rlOFICK, (C) I/paMO~t llOrlCrOBblt~ 
MeTo~ Xoxr~--;I~eBrI, a r a ~ e  Mexo~ aenHHe~aI, IX riamwermIm~x r, Ba~paroB Faycca--Hr~rOTOrm. 
Peay~A, TaxbI CBH,/~eTeJIbCTByIOT, T-ITO nBMeuenHI, Ifi MeTO~ (6) ~IB.rlIIeTC$I I~ecoMnelqrlo ~an6onee  
3~eI(THBt/bIM I'I3 "~pex npaM]bIX IIOHCKOBbIX MeTO~OB, M-tO MeTO~I ~teztrme~m, ix ~anMeH~,mI, IX 
KBa~tpaTOB ffBJLqeTcff Hans~yamrrM no cpaBHeHr~rO C IIp~MbIMl, I HOCItI(OBblMIt MeTo~aM2~. 

3. Thermal AnaL 9, 1976 


